11 research outputs found

    Electromagnetic Field Interaction with Metamaterials

    Get PDF
    It is well known that constitutive parameters, namely, the electrical permittivity, ε, and the magnetic permeability, μ, in a medium determine the response and reaction of such medium or material when exposed to external time-varying electromagnetic fields. Furthermore, most materials are lossy and dispersive, that is, both permittivity and permeability are complex and frequency-dependent. Interestingly, by controlling the sign of real parts of ε and μ in a medium, unique electromagnetic properties can be achieved that are not readily available in nature. Recently, subwavelength composite engineered structures, also known as metamaterials, have evolved in many engineering and optical applications, due to their unique electromagnetic properties that are not found in nature, including but not limited to negative refractive index, backward wave propagation, subwavelength focusing and super lenses, and invisibility cloaking. The main aims of this chapter are to provide an overview of electromagnetic field behavior and interaction with metamaterials and to explore such behavior in various metamaterials both analytically and numerically

    Metamaterials for Decoupling Antennas and Electromagnetic Systems

    Get PDF
    This research focuses on the development of engineered materials, also known as meta- materials, with desirable effective constitutive parameters: electric permittivity (epsilon) and magnetic permeability (mu) to decouple antennas and noise mitigation from electromagnetic systems. An interesting phenomenon of strong relevance to a wide range of problems, where electromagnetic interference is of concern, is the elimination of propagation when one of the constitutive parameters is negative. In such a scenario, transmission of electromagnetic energy would cease, and hence the coupling between radiating systems is reduced. In the first part of this dissertation, novel electromagnetic artificial media have been developed to alleviate the problem of mutual coupling between high-profile and ow-profile antenna systems. The developed design configurations are numerically simulated, and experimentally validated. In the mutual coupling problem between high-profile antennas, a decoupling layer based on artificial magnetic materials (AMM) has been developed and placed between highly-coupled monopole antenna elements spaced by less than Lambda/6, where Lambda is the operating wavelength of the radiating elements. The decoupling layer not only provides high mutual coupling suppression (more than 20-dB) but also maintains good impedance matching and low correlation between the antenna elements suitable for use in Multiple-Input Multiple-Output (MIMO) communication systems. In the mutual coupling problem between low-profile antennas, novel sub-wavelength complementary split-ring resonators (CSRRs) are developed to decouple microstrip patch antenna elements. The proposed design con figuration has the advantage of low-cost production and maintaining the pro file of the antenna system unchanged without the need for extra layers. Using the designed structure, a 10-dB reduction in the mutual coupling between two patch antennas has been achieved. The second part of this dissertation utilizes electromagnetic artificial media for noise mitigation and reduction of undesirable electromagnetic radiation from high-speed printed-circuit boards (PCBs) and modern electronic enclosures with openings (apertures). Numerical results based on the developed design configurations are presented, discussed, and compared with measurements. To alleviate the problem of simultaneous switching noise (SSN) in high-speed microprocessors and personal computers, a novel technique based on cascaded CSRRs has been proposed. The proposed design has achieved a wideband suppression of SSN and maintained a robust signal integrity performance. A novel use of electromagnetic bandgap (EBG) structures has been proposed to mitigate undesirable electromagnetic radiation from enclosures with openings. By using ribbon of EBG surfaces, a significant suppression of electromagnetic radiation from openings has been achieved

    Magnetostatic waves in metallic rectangular waveguides filled with uniaxial negative permeability media

    Full text link
    The propagation characteristics of magneto-quasistatic waves, more commonly, known as magnetostatic waves in a long, metallic rectangular waveguide filled with a metamaterial slab are comprehensively investigated. The metamaterial slab consists of split-ring resonators as an anisotropic uniaxial medium with transversal negative effective permeability. Some analytical relations and numerical validations on the characteristics of these waves are presented. The results include the dispersion relations, mode patterns (field distributions) that can be supported by such media and their corresponding cutoff frequencies, group velocities, power flows, and storage energies of magnetostatic waves. The findings from the present research study can be advantageous to advance the synthesis and development of negative permeability materials with peculiar features in guiding structures.Comment: 9 pages, 6 figure

    An Active Learning Computer-Based Teaching Tool for Enhancing Students’ Learning and Visualization Skills in Electromagnetics

    Get PDF
    Electromagnetic theoretical concepts, which are represented mathematically, are usually challenging to grasp by students. In this study, we explore an interactive technology-based teaching tool to develop further students’ mastery of electromagnetic concepts through learning development and visualization of electromagnetic problems. This visualization of the problems will help students analyse, evaluate, and draw conclusions of the impact of electromagnetic-related problems in real-life. The simulation tool in this study is based on a MATLAB toolbox package, in which partial-differential equations (PDE) solver is the core engine. In this paper, we will also provide a step-by-step guide on the use of such an interactive computer-aided tool so that it can be a great self-guide tool for beginners in the field of physics and a first-level introductory course in electromagnetism. This study will focus mainly on one classical electrostatic problem that is a challenge to students to visualize, analyze and evaluate. Based on students feedback by the end of the course, 80% of students' population are more comfortablewith the introduced interactive learning tool.

    Microwave Sensors for Soil Moisture Detection: An Application toward Healthy Date Palm

    Get PDF
    Soil moisture is an important key parameter in the earth ecosystem that has an impact on both landscape and atmospheric conditions. Moreover, sudden changes to soil moisture due to environmental conditions result in degradation to food plants and, thus, may consequently affect food yields. This chapter aims to investigate numerically an application for crops health through soil moisture detection using microwave-based sensors. The numerical studies are carried out using full-wave electromagnetic simulations. More emphasis on the numerical setup of microwave antennas with customized modeled soil layer is presented

    A Less Complex Algorithmic Procedure for Computing Gray Codes

    Get PDF
    The purpose of this paper is to present a new and faster algorithmic procedure for generating the n bi Gray codes. Thereby, through this paper we have presented the derivation, design and implementation of a newly developed algorithm for the generation of an n-bit binary reflected Gray code sequences. The developed algorithm is stemmed from the fact of generating and properly placing the min-terms from the universal set of all the possible min-terms [m0 m1 m2 …. mN] of Boolean function of n variables, where, 0 < N <  2n-1. The resulting algorithm is in concise form and trivial to implement. Furthermore, the developed algorithm is equipped with added attributes of optimizing of time and space while executed

    Characterization of Propagation Models in Wireless Communications for 4G Network

    Get PDF
    Estimating the pathloss and signal strength of the transmitted signal at specific distances is one of the main objectives of network designers. This paper aims to provide generalized pathloss models appropriate for urban areas in Muscat the capital city of the Sultanate of Oman environment. The research includes studying different models of pathloss for the 4G cellular network at Muttrah Business District (MBD) at Muscat. Different models (Free Space model, Okumura Hata, Extended Sakagami, Cost231 Hata, ECC-33 Hata – Okumura extended, Ericsson, Egli, and SUI) are used with 800MHz. The results of the prediction models are compared with real measured data by calculating RMSE. The generalized models are created by modified original models to get accepted RMSE values.  Different cells at MBD are tested by modified models. The RMSE values are then calculated for verification purposes.  To validate the modified pathloss models of 4G, they are also applied at different cells in different cities in the capital. They have approximately the same environment as MBD. The modified pathloss models provided accepted predictions in new locations

    Characterization of Propagation Models at 5G Network and Effects of SAR on Human Brain

    Get PDF
    Nowadays, the world is turning into technology, fast internet and high signal quality. To ensure high signal quality, the network planners have to predict the pathloss and signal strength of the transmitted signal at specific distances in the design stage. The aim of this research is to provide a generalized pathloss model to suit the urban area in Muscat Governorate in the Sultanate of Oman. The research covers 5G network pathloss in the Muttrah Business District (MBD) area. It includes Close In (CI) model and Alpha Beta Gamma (ABG) model with 3.45GHz. The results of 5G models were compared with real experimental data in MBD by calculating Root Mean Square Error RMSE. Other cells at MBD area were used for reverification.  To validate the modified pathloss models of 5G, they were applied at different cells in Alkhoud area. Furthermore, this paper also deals the effect of Specific Absorption Rate (SAR) on the human brain for ensuring safety due to close proximity to cell towers. The SAR values were calculated indirectly from the electric field strength of different antennas. Calculated results were compared with the international standards defined limits on the human brain

    Characterization of Propagation Models in Wireless Communications for 4G Network

    No full text
    Estimating the pathloss and signal strength of the transmitted signal at specific distances is one of the main objectives of network designers. This paper aims to provide generalized pathloss models appropriate for urban areas in Muscat the capital city of the Sultanate of Oman environment. The research includes studying different models of pathloss for the 4G cellular network at Muttrah Business District (MBD) at Muscat. Different models (Free Space model, Okumura Hata, Extended Sakagami, Cost231 Hata, ECC-33 Hata – Okumura extended, Ericsson, Egli, and SUI) are used with 800MHz. The results of the prediction models are compared with real measured data by calculating RMSE. The generalized models are created by modified original models to get accepted RMSE values. Different cells at MBD are tested by modified models. The RMSE values are then calculated for verification purposes. To validate the modified pathloss models of 4G, they are also applied at different cells in a different city in the capital. It has approximately the same environment as MBD. The modified pathloss models provided accepted predictions in new locations
    corecore